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FIGURES OF MERIT 
FOR DIGITAL MULTISTEP PSEUDORANDOM NUMBERS 

DEBRA A. ANDRE, GARY L. MULLEN, AND HARALD NIEDERREITER 

ABSTRACT. The statistical independence properties of s successive digital mul- 
tistep pseudorandom numbers are governed by the figure of merit p(s) (I) which 
depends on s and the characteristic polynomial f of the recursion used in the 
generation procedure. We extend previous work for s = 2 and describe how to 
obtain large figures of merit for s > 2, thus arriving at digital multistep pseu- 
dorandom numbers with attractive statistical independence properties. Tables 
of figures of merit for s = 3, 4, 5 and degrees < 32 are included. 

I. INTRODUCTION 

The well-known linear congruential method for the generation of uniform 
pseudorandom numbers in the interval [0, 1] is based on the one-step recursion 

Yn~1-byn+c modM forn=0, 1,... 

where the modulus M is a large integer, b is a suitably chosen integer co- 
prime to M, c is an integer, and the Yn are integers with 0 < Yn < M. A 
sequence x0, xl, ... of uniform pseudorandom numbers is obtained by the 
scaling xn = yn /M. Since these pseudorandom numbers have some undesir- 
able features, such as their lattice structure (see e.g. Knuth [2, Chapter 3]), other 
pseudorandom number generators have recently received increased attention. 

The idea of using multistep recursions for pseudorandom number generation 
is usually attributed to Tausworthe [12] but can be traced back to the 1950's (see 
e.g. van Wijngaarden [ 13]). The generation of uniform pseudorandom numbers 
by k-step recursions with k > 2 proceeds as follows. First, we generate a 
sequence yo, y I, .. . of bits by the recursion 

(1) Yn+k bk-lYn+kI + + bOyn mod 2 for n = 0, 1,... 

where the bi are fixed bits with bo = 1 and where the initial values yo, y1, 
.. ., Y-_ are not all 0. The sequence of yn is periodic, and to maximize 
the length of its least period for given k, we assume from now on that the 
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characteristic polynomial 

(2) f(X) = x + bkl x1 + + b 

of the recursion (1), considered as a polynomial over the binary field F2, is a 
primitive polynomial. We recall that a polynomial over F2 of degree k is called 
primitive if its roots are generators of the cyclic group F*, the multiplicative 

group of nonzero elements of the finite field F. with q = 2k elements (compare 
with Lidl and Niederreiter [3, Chapter 3]). 

The bits y, generated by (1) are transformed into a sequence xO, xl, ... of 
uniform pseudorandom numbers in [0, 1] by setting 

k 

(3) Xn = ZYkn+j-12 for n = 0, 1. 
j=1 

In other words, we obtain the numbers xn by splitting up the sequence yO, 
y, ... into consecutive blocks of length k and then interpreting each block 
as the dyadic expansion of a number in [O, 1) (more generally, one may take 
any block length m with 2 < m < k, but we restrict the attention to the 
most common case m = k). The numbers xn in (3) are called digital k-step 

pseudorandom numbers. We assume from now on that gcd(k, 2k _ 1) = 1; 
then the sequence xO, xl, ... is purely periodic and its least period length 
is z = 2k _ 1. For these and other elementary properties of digital k-step 
pseudorandom numbers we refer to Knuth [2, Chapter 3], Lidl and Niederreiter 
[3, Chapter 7], and Niederreiter [6]. We note that the construction of digital 
multistep pseudorandom numbers may be carried out in an arbitrary prime base 
p, but that the base p = 2 with which we work is the most convenient one for 
practical implementations. 

For many simulation purposes the most desirable property of a sequence of 
uniform pseudorandom numbers is that of statistical independence of succes- 
sive terms. In the case of digital multistep pseudorandom numbers, theoretical 
results on statistical independence properties are available and they will be de- 
scribed in detail in ?2. The essential feature of these results is that in order to 
have any s successive digital k-step pseudorandom numbers close to statistical 
independence, the characteristic polynomial f in (2) has to be chosen care- 
fully. The suitability of f is measured by the figure of merit p(s)(f) which 
will be defined in Definition 2 and depends on f and also on the prescribed 
value of s . The larger the figure of merit p(s) (f), the closer we are to statistical 
independence of any s successive digital k-step pseudorandom numbers. This 
leads to the computational problem of finding primitive polynomials f over 
F2 with a large value of p(s) (f) for given s > 2. It is inherent in the nature 
of this problem that the required computational effort increases with s. The 
simplest case s = 2 was treated by Mullen and Niederreiter [4]. In the present 
paper we deal with larger values of s. In this way we arrive at concrete digital 
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multistep pseudorandom numbers with very attractive statistical independence 
properties. 

2. THEORETICAL BACKGROUND 

The statistical independence properties of a sequence x0, xl, ... of uniform 
pseudorandom numbers in [0, 1] can be analyzed as follows. For fixed s > 2 
consider the points 

(4) Xn = (Xn, Xn+l , Xn+s1) E [0, 'Is for n = 0, 1,. 

In the ideal case where x0, xl, ... is a sequence of uniformly distributed and 
independent random variables, the probability that Xn falls into a given interval 
J C [0, 1]s is equal to the volume V(J) of J. Therefore, the statistical 
independence properties of the pseudorandom numbers xn can be tested by 
comparing the actual distribution of the points Xn in (4) with this ideal case. 
The following definition from [9, ?2] describes point sets for which the relative 
frequency of points in J is equal to V(J) for a whole family of intervals J. 

Definition 1. Let 0 < t < k be integers. A (t, k, s)-net (in base 2) is a set P 
of 2k points in [0, 1 )s with the following property: every interval J C [0, 1 )s 
of the form 

s 

(5) J = fl[ai2 
-e 

,(ai + 1)2 e) 
i= 1 

with integers a1 and e1 and with V(J) = 2t-k contains exactly 2t points 
of P. 

It follows from Definition 1 that if P is a (t, k, s)-net and J C [0, 1)s 
is an interval of the form (5) with V(J) > 2t , or a finite disjoint union of 
such intervals, then J contains exactly 2 kV(J) points of P. In particular, 
Definition 1 becomes stronger for smaller values of t. Further details and 
numerous results concerning (t, k, s)-nets can be found in Niederreiter [9]. 

If x0, x1, ... is a sequence of digital k-step pseudorandom numbers, then 

consider the points Xn in (4) over the full period, i.e., for 0 < n < - 1 = 2 k-2. 
According to Theorem A below, which is a special case of [9, Theorem 9. 1], these 
points together with 0 = (O, . .. , 0) form a (t, k, s)-net with a value of t that 
depends on the figure of merit p(s) (f) defined in Definition 2. We write again 

F. for the finite field with q = 2k elements and note that Fq can be viewed as 
a vector space of dimension k over F2. 

Definition 2. For any s > 2 and any characteristic polynomial f of degree k, 
the figure of merit p(s) (f) is defined by 

S 

p(S) (f) = minE di, 
i=l1 
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where the minimum is extended over all s-tuples (dI , ... , dS) 7 (0, ..., 0) of 

integers with 0 < di < k for 1 < i < s such that the elements a (i1 )k+j1 1 < 
< did, 1 < i < s, are linearly dependent over F2. Here a is a fixed root of f 

in Fq (the value of p(s) (f) does not depend on the specific choice of a , since 
f is assumed to be primitive, and hence irreducible over F2 ). 

Theorem A. Let xO, xI, ... be digital k-step pseudorandom numbers and let f 
be the characteristic polynomial. Then for any s > 2 the points 0, XO, XI, 

X,_ Iform a (t 5 k , s)-net with t = k + 1 - p(s) (f) . 

It is clear from Definition 2 that we always have 2 < p(S) (f) < k + 1 . Since 
the property expressed in Theorem A is stronger the smaller the value of t, the 
desirable choices for f are those for which p(s) (f) is large. 

The considerations above are closely connected with the s-dimensional serial 
test, which is a standard test for the statistical independence of s successive 
uniform pseudorandom numbers (see Knuth [2, Chapter 3] and Niederreiter 
[5]). Let xO, xl, ... be a sequence of uniform pseudorandom numbers in 
[O, 1], and for given s > 2 define the points X, by (4). Then define the 
discrepancy 

DN) = SUP N#{n<N:XEJ}-V(J) forN>1, 

where the supremum is extended over all intervals J = Hs=1 [0, ui] C [0, 1]S. 
The sequence xO, x1, ... passes the s-dimensional serial test if D(s) is small 
for large N. For digital k-step pseudorandom numbers we have the following 
result on D(S) for the full period, i.e., for N = T = 2k _ 1; a similar result for 
N < T is also known (see [10]). 

Theorem B. For digital k-step pseudorandom numbers and any s > 2, we have 
s-i 

2 1 < D(s) < P 2-P+1 + O(Ps-22-P) 
- 

T 
- 

(s-i)T! 
with p = p(s)(f), where the implied constant in the 0-term is effective and 
depends only on s. 

The lower bound in Theorem B is a special case of [7, Satz 10], and the upper 
bound is a special case of [9, Theorem 9.4]. Theorem B shows that in order to 
get a small discrepancy D(s), we have to choose f in such a way that p(s) (f) 
is large. 

Thus, Theorems A and B lead to the same conclusion, namely that the suit- 
ability of a characteristic polynomial f can be measured by the figure of merit 
p(s)(f), and that p(s)(f) should be as large as possible. It is clear from Defi- 
nition 2 that, as the notation suggests, p(s) (f) depends also on s. Character- 
istic polynomials f for which p(s)(f) is large for several values of s, such as 
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s = 2, 3, 4, 5, are of particular interest. It is easy to see that 

(6) p(S) (f) < p () (f) for s > r, 

hence if p(s) (f) is large for some s, it is necessarily large for all smaller values 
of s. 

3. COMPUTATIONAL RESULTS 

In searching for primitive polynomials f of degree k with large figure of 
merit p(s) (f) for s > 3, we first require that such f be optimal characteristic 
polynomials for the s = 2 case as discussed in Mullen and Niederreiter [4]. To 
be more specific, if f is the characteristic polynomial of degree k as in (2), 
then the rational function f (x)/xk has a unique continued fraction expansion 

f(X) = 1 + 11(A + 11(A + + 11A =: [1, Al, A A 

where Ai is a polynomial over F2 with deg(Ai) > 1 for 1 < i < h. The partial 
quotients Al, A2' ..., Ah can be calculated by the Euclidean algorithm. We 
put 

L(f) = max deg(Aj), 
1<i<h 

so that L (f) is an integer with 1 < L(f) < k . It was shown in Niederreiter [7, 
Satz 12] that 

(7) p(2) (f) = k + 2-L(f) . 

Hence, in order to make p(2) (f) as large as possible for a fixed k (i.e., to 
obtain an optimal characteristic polynomial), one would like to have L(f) = 1; 
however, it turns out that this is usually not feasible for the following reason. 

As shown in Niederreiter [8], for every k > 1 , there exists a unique poly- 
nomial fk over F2 of degree k with fk(O) $& 0 and L(fk) = 1. Moreover, 
fk(x) is given by 

d+l 

fk(X) = ZxkLk/2J L 
j=O 

where the integer d is defined by 2d < k < 2 d+ and LwJ denotes the greatest 
integer < w . Unfortunately, as indicated in Mullen and Niederreiter [4], most 
of these polynomials are not even irreducible, let alone primitive (in fact, in the 
range 2 < k < 32, the only primitive polynomials fk are f2, f3, and f 0). 
Hence, most are not optimal characteristic polynomials for the s = 2 case. 

Since there are so few primitive polynomials f with L(f) = 1, primitive 
polynomials with L(f) = 2 were also considered by Mullen and Niederreiter 
[4]. On the basis of calculations performed for [4], there appear to be, in general, 
a number of primitive polynomials f with L(f) = 2 for each degree k. 

For each k < 21, an exhaustive search was conducted by machine (an IBM 
3090/400 computer) to locate all primitive polynomials f of degree k over 
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TABLE 1 

Primitive polynomials f with large p(3) (f values 

k p(3)(f) f 
3 3 0 1 3 
4 4 0 3 4 
5 5 0 1 2 3 5 

*6 4 0 1 2 5 6 
7 6 0 1 3 6 7 
8 7 0 1 2 5 6 7 8 
9 8 0 5 6 8 9 

10 9 0 1 3 5 6 8 10 
11 10 0 6 8 9 11 
12 11 0 2 5 7 9 10 12 
13 11 0 1 2 5 6 7 8 10 11 12 13 
14 12 0 1 2 3 9 12 14 
15 13 0 1 6 7 8 9 13 14 15 
16 14 0 1 2 3 4 6 7 9 11 14 16 
17 15 0 2 4 5 6 11 12 14 15 16 17 

*18 16 0 2 5 6 7 9 10 1315 16 18 
19 17 0 1 2 4 6 9 10 14 1 51719 

*20 18 0 1 2 4 9 11 12 15 17 18 20 
*21 19 0 2 3 6 9 10 11 12 13 14 17 19 21 
22 20 0 1 2 3 9 16 17 19 20 21 22 
23 21 0 1 2 4 6 9 10 12 13 14 18 19 20 21 23 

*24 21 0 1 2 3 4 5 6 9 10 11 12 14 15 16 17 20 21 22 24 
25 22 0 1 2 3 4 5 6 9 12 13 14 15 17 19 20 21 22 24 25 
26 23 0 1 2 3 4 5 6 7 9 12 14 15 16 19 22 24 26 
27 24 0 1 2 3 4 5 6 7 11 13 14 15 18 19 23 26 27 
28 25 0 1 2 3 4 5 6 7 8 9 13 14 17 18 23 24 25 26 28 
29 26 0 1 3 4 11 16 18 20 23 25 27 28 29 

*30 27 0 1 3 5 6 7 8 10 13 14 15 20 23 24 27 29 30 
31 28 0 1 2 3 4 5 6 7 8 9 10 14 15 18 22 23 27 29 31 
32 29 0 1 2 3 4 5 6 7 8 9 12 15 [9 20 21 23 25 26 27 28 29 31 32 

F2 with L(f) < 2. For 22 < k < 32, nonexhaustive collections of primitive 
polynomials of degree k with L(f) < 2 were obtained. By having k < 32, one 
can take full advantage of the precision of a 32-bit machine. While stopping 
at k = 64 would have been beneficial for 64-bit processors, the amount of 
calculation described below becomes excessive for k much greater than 32. 

The following simplified version of an algorithm from Peterson and Weldon 
[11] was used to test a polynomial f of degree k over F2 for primitivity. The 

2 4 2k- i 
residues of x, X2, X4, .. ., X are computed modulo f(x). The product of 

these residues is calculated to obtain the residue of x modulo f(x). If 

x - 1 ( mod f(x)), then f(x) is not primitive. If x 1 ( mod f(x)), 
we proceed as follows. The factorization of 2k _ 1 is obtained from Brillhart, 
Lehmer, Selfridge, Tuckerman, and Wagstaff [ 1 ] and then for each prime factor 

r of 2 _ 1, the residue of x(2 l)/r modulo f(x) is calculated. If for at least 

one such r we have x(2 -)/r 1 ( mod f(x)), then f(x) is not primitive. If 
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TABLE 2 
Primitive polynomials f with large p(4) ( values 

k p(3)(f) p(4) (f) f 
3 3 3 0 1 3 
4 4 3 0 3 4 
5 5 5 0 1 2 3 5 

*6 4 4 0 1 2 5 6 
7 6 6 0 1 3 6 7 
8 7 5 0 1 2 5 6 7 8 
9 8 6 0 5 6 8 9 

10 8 8 0 2 3 7 8 9 10 
11 10 9 0 6 8 9 11 

*12 10 9 0 1 3 8 9 11 12 
13 11 11 0 1 2 5 6 7 8 10 11 12 13 
14 11 11 0 2 3 4 6 10 I1 12 14 
15 12 12 0 1 4 5 6 10 11 13 15 
16 14 12 0 1 2 3 4 6 7 9 11 14 16 
17 15 14 0 5 8 12 1316 17 

*18 15 14 0 1 2 4 5 7 12 1516 17 18 
19 16 16 0 1 2 4 6 7 10 1314 15 16 18 19 

*20 17 16 0 1 2 4 5 6 7 9 10 14 16 19 20 
*21 19 17 0 1 3 4 5 6 8 10 14 16 1720 21 
22 19 18 0 1 3 12 13 15 16 17 18 20 22 
23 19 19 0 1 2 5 6 7 9 10 11 12 13 16 17 19 20 21 23 

*24 21 20 0 1 3 5 6 7 8 10 12 15 18 20 22 23 24 
25 22 20 0 1 2 3 4 5 6 9 12 13 14 15 17 19 20 21 22 24 25 
26 21 21 0 1 2 3 4 5 6 7 12 16 17 22 23 25 26 
27 23 22 0 1 2 3 4 5 6 7 10 12 14 15 17 19 20 21 25 26 27 
28 23 23 0 1 2 3 4 5 6 7 8 9 11 14 15 16 18 19 20 22 23 26 28 
29 24 24 0 1 3 5 6 7 10 13 14 17 19 21 26 28 29 

*30 25 25 0 1 2 3 4 5 6 7 8 11 13 17 18 23 24 26 28 29 30 
31 26 26 0 1 2 3 4 5 6 7 8 9 11 12 13 14 17 18 21 22 24 27 28 30 31 
32 27 27 0 1 2 3 4 5 6 7 8 12 14 16 19 20 21 22 24 27 28 30 32 

(2-k 1)/r r 
X 1( mod f (x)) for all such r, then x(X) is a primitive polynomial 
of degree k over F2. 

Having obtained exhaustive collections of primitive polynomials f with 
L(f) < 2 for each k < 21, and extensive collections of such polynomials 
for 22 < k < 32, we then attempted to locate among those primitive polyno- 
mials of a given degree k, polynomials f with the property that for a fixed 

3 < s < 5, the figure of merit p(S) (f ) is large. Note that by (6), p(S) (f) can be 

large for some s > 3 only if p(2)(f) is large, i.e., if L(f) is small (see (7)). 
To calculate the figure of merit p(s)(f) for a given primitive polynomial f 

of degree k, we proceeded as follows. Let a be a root of f(x) . For a fixed 

3 < s < 5 begin with d = k, and find all choices of (dl, ..., ds) $ (O,...., O) 
so that Ei=di=d,where the di are integers with O < di < k for 1 < i < s. 

If for all such choices of (d,, ..., ds) the systems 

fa(i-')k+j- 
I 

<i<di l < i<.sl 
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TABLE 3 
Primitive polynomials f with large p(5) (f) values 

k p(3) (f ) p(4) (f) p(5) (f) f 
3 3 3 3 0 1 3 
4 4 3 3 0 3 4 
5 5 5 4 0 1 2 3 5 

*6 4 4 4 0 1 2 5 6 
7 6 6 5 0 1 3 6 7 
8 7 5 5 0 1 2 5 6 7 8 
9 8 6 6 0 5 6 8 9 

10 7 7 7 0 5 7 8 10 
11 8 8 8 0 1 5 7 9 10 11 

*12 10 9 8 0 1 3 8 9 11 12 
13 11 11 9 0 1 2 5 6 7 8 10 11 12 13 
14 12 10 10 0 1 2 3 9 12 14 
15 12 12 11 0 1 4 5 6 10 11 13 15 
16 13 12 12 0 3 4 7 10 12 14 15 16 
17 14 13 12 0 6 9 13 14 1517 

*18 14 14 13 0 1 3 6 7 12 15 17 18 
19 15 15 14 0 1 4 6 8 9 12 151618 19 

*20 17 15 15 0 5 7 13 14 1618 1920 
*21 17 17 16 0 1 3 4 5 6 9 12 14 16 1719 21 
22 17 17 17 0 1 4 5 6 10 11 14 18 20 22 
23 19 19 17 0 1 2 5 6 7 9 10 11 12 13 16 17 19 20 21 23 

*24 21 19 18 0 1 2 3 4 5 6 9 10 11 12 14 15 16 17 20 21 22 24 
25 21 19 19 0 1 2 3 4 5 7 12 18 21 23 24 25 
26 21 21 20 0 1 2 3 4 5 6 7 12 16 17 22 23 25 26 
27 21 21 20 0 1 2 3 4 5 6 7 813 16 17 19 20 22 25 27 
28 24 21 21 0 1 2 3 4 5 6 7 8 9 12 17 18 21 22 23 24 26 28 
29 25 23 22 0 1 3 4 10 11 13 17 18 19 21 22 24 25 26 28 29 

*30 26 23 23 0 1 3 5 6 7 9 10 11 12 13 17 19 20 22 24 27 29 30 
31 25 25 24 0 16 20 26 27 29 31 
32 26 26 25 0 1 2 3 4 5 6 7 8 9 11 12 21 22 24 26 27 28 30 31 32 

are linearly independent over F2, then p(S)(f) = d + 1 . Otherwise, if at least 
one of the systems is linearly dependent over F2, then d is decremented by 
one and the procedure is repeated. 

Unfortunately, for s> 2 no formula for p(s) (f) analogous to (7) for p(2) (f) 
is known. For k < 21, an exhaustive search was made over all primitive 
polynomials f of degree k with L(f) < 2. For each of these polynomials 
f ,P(S)(f) was calculated for each 3 < s < 5. It was found that, for each 
3 < s < 5 and each k < 21 , there exists at least one primitive polynomial f of 
degree k with L(f) < 2 and p(s)(f) > k - s. There are however cases where 
there is no polynomial f of degree k with p(s) (f) > k - s + 1 . For example, 
if k = 20 and s = 4, there does not exist a primitive polynomial f of degree 
20 with L(f) < 2 and p(4)(f) > 17. Hence, we see that in general, if f has 
degree k, the best possible value for p(S)(f) is k - s. Thus, we have some 
justification for the following concept. 

For a fixed 3 < s < 5, a polynomial f of degree k is said to be s-optimal if it 
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TABLE 4 
Universally optimal primitive polynomials 

k p(3)(f) p(4)(f) p(5)(f) f 
3 3 3 3 0 1 3 
4 4 3 3 0 3 4 
5 5 5 4 0 1 2 3 5 
6 4 4 4 0 1 2 5 6 
7 6 6 5 0 1 3 6 7 
8 7 5 5 0 1 2 5 6 7 8 
9 8 6 6 0 5 6 8 9 

10 8 8 6 0 2 3 7 8 9 10 
11 10 9 7 0 6 8 9 11 

*12 10 9 8 0 1 3 8 9 11 12 
13 11 11 9 0 1 2 5 6 7 8 10 11 12 13 
14 12 10 10 0 1 2 3 9 12 14 
15 12 12 11 0 1 4 5 6 10 11 13 15 
16 13 12 12 0 3 4 7 10 12 14 15 16 
17 14 13 12 0 6 9 1314 1517 

*18 14 14 13 0 1 3 6 7 1215 17 18 
19 15 1.5 14 0 1 4 6 8 9 12 151618 19 

*20 17 15 15 0 5 7 1314 1618 1920 
*21 17 17 16 0 1 3 4 5 6 9 12 14 16 1719 21 

22 18 18 16 0 1 2 5 6 8 9 11 13 14 16 17 18 20 22 
23 19 19 17 0 1 2 5 6 7 9 10 11 12 13 16 17 19 20 21 23 

*24 21 19 18 0 1 2 3 4 5 6 9 10 11 12 14 15 16 17 20 21 22 24 
25 21 19 19 0 1 2 3 4 5 7 12 18 21 23 24 25 
26 21 21 20 0 1 2 3 4 5 6 7 12 16 17 22 23 25 26 
27 23 21 19 0 1 2 3 4 5 6 7 812 17 23 24 26 27 
28 24 22 20 0 1 2 3 4 5 6 7 8 9 11 12 13 15 18 19 24 27 28 
29 25 23 22 0 1 3 4 10 11 13 17 18 19 21 22 24 25 26 28 29 

*30 26 23 23 0 1 3 5 6 7 9 10 11 12 13 17 19 20 22 24 27 29 30 
31 25 25 24 0 16 20 26 27 29 31 
32 26 26 25 0 1 2 3 4 5 6 7 8 9 11 12 21 22 24 26 27 28 30 31 32 

is primitive and satisfies L (f) < 2 and p(s) (f) > k - s . Because of the amount 
of computation required to determine whether a polynomial of degree k is 
s-optimal for k > 21, only a small fraction of the total number of primitive 
polynomials f with L(f) < 2 was tested. 

In Tables 1-4, if f (x) = Ek 0 bix', we have listed only the exponents of the 
terms for which bi $ 0, and hence bi = 1 . Thus, for example, the polynomial 
1 + X + X3 is listed as 01 3. We have indicated with an asterisk those degrees 
k for which gcd(k, 2k _ 1) > 1 . 

Tables 1, 2, and 3 list the primitive polynomials f of degree k 3 < k < 
32, with L(f) < 2 that have the largest p(S)(f) value for s = 3, 4, and 5, 
respectively, out of all the polynomials tested. From Table 1 it can be seen 
that there exists a 3-optimal polynomial of degree k for all k < 32. Table 
2 gives 4-optimal polynomials up to degree 24, while Table 3 gives 5-optimal 
polynomials up to degree 22. In Tables 2 and 3 we have also listed for the 
given polynomial f the values of p(r)(f) for 3 < r < s. Of course, from (6) 
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it is clear that p(r) (f) > p(S)(f). Moreover, in each of the three tables, for any 
polynomial f of degree k we have p(2)(f) = k . 

4. UNIVERSALLY OPTIMAL CHARACTERISTIC POLYNOMIALS 

From a practitioner's point of view, it would be convenient to have, for each 
degree, a single polynomial f that is s-optimal for all 2 < s < 5. Since such 
polynomials in general do not exist, one would like to consider the question of 
whether there exists, for each degree k, a primitive polynomial f of degree k 
with L(f) < 2 having large p(s) (f) values for all 2 < s < 5. Such polynomials 
will be considered to be universally optimal. 

Table 4 contains a list of universally optimal polynomials. Notice that for 

k < 13 , p(S) (f) >k-s+ 1, 

k?< 17, p(s)(f)>k- 

k ? 24, p(S) (f) > k - s - 1 5 

k<26, p(s)(f)>k2-s-2 

k < 32, p(S)(f) > k - s - 3 

for all 2 <s < 5. 
It should be pointed out that for k < 21 these results are best possible, so that 

for example, if k = 14, there does not exist a universally optimal characteristic 
polynomial f of degree 14 with p(S)(f) > 14 - s + 1 for all 2 < s < 5. 

5. CONCLUSIONS 

Our computational results show that for every 2 < s < 5 and every k < 32 
there exist digital k-step pseudorandom numbers such that any s successive 
pseudorandom numbers are statistically almost independent. In fact, for every 
k < 32 we have determined a primitive characteristic polynomial of degree k 
such that the generated pseudorandom numbers pass the s-dimensional serial 
test for all 2 < s < 5 (see ?4). It is to be expected that similar characteristic 
polynomials can also be found for larger values of k. For the case s = 2, suit- 
able characteristic polynomials are available for all k < 64 by the calculations 
in [4]. For general s and k we have the following special case of a theorem of 
Niederreiter [10]: for any s > 2 and k > 2 there exists a primitive polynomial 
f over F2 of degree k such that 

P(S) log2(Csq(2k _1)ks), 

where log2 is the logarithm to the base 2, the constant Cs > 0 depends only 
on s, and q is Euler's totient function. It follows that for such an f the figure 
of merit p(S) (f) has a lower bound that is essentially of the form k - s log2 k. 
However, the proof of the result above is nonconstructive. 
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For the pseudorandom numbers obtained from our tables, the points Xn in 
(4) show a very even distribution over [0, 1Is. For instance, if we consider 
the pseudorandom numbers generated by the characteristic polynomial listed in 
Table 1 for k = 32, then the points 0, X0, Xl, ..., XT_ in [0, 1)3 form a 
(4, 32, 3)-net according to Theorem A. This means that every subinterval of 

[0, 1)3 of the form (5) with volume 2 28 contains exactly 16 points of this 
point set. Such strong uniformity properties are not known for comparable lin- 

32 ear congruential pseudorandom numbers with modulus M = 2 . Digital mul- 
tistep pseudorandom numbers have another advantage over linear congruential 
pseudorandom numbers, namely, that they are generated by binary arithmetic 
as opposed to modular arithmetic with a very large modulus. Therefore, digital 
multistep pseudorandom numbers offer a viable alternative to linear congru- 
ential pseudorandom numbers when ease of generation and strong uniformity 
properties are desired. 
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